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1 Examples in Galois Theory and Primitive Elements

1.1 Galois group of an irreducible degree 3 polynomial

Consider an irreducible polynomial x3 + ax2 + bx + c = 0. The Galois group G ⊆ S3,
the permutations of the roots. 3 divides the order of the Galois group, so G = Z/3Z, so
Z = S3.

Example 1.1. Take x3 − 2 over Q. The Galois group is S3.

Example 1.2. Take x3 + x+ 1 over F2. The Galois group is Z/3Z.

We look at ∆ = (α − β)(β − γ)(γ − α), where α, β, and γ are the roots of the
polynomial. ∆ is fixed by Z/3Z, but changes sign under odd permutations of α, β, γ. If
the Galois group is Z/3Z, ∆ must be in the base field. If the Galois group is S3, ∆ 7→ −∆
must be an automorphism. We must find if

∆2 = (α− β)2(β − γ)2(γ − α)2

has a square root in the base field. This is a symmetric function of α, β, γ, and we can
compute this as

∆2 = −4b3 − 27c2

if a = 0.

Example 1.3. Take x3 − 3x− 1 over Q. ∆2 = 81, which is a square in Q. So the Galois
group is Z/3Z.

1.2 Algebraic closure of C

We have enough tools to provide a mostly algebraic proof of the fundamental theorem of
algebra: that C is algebraically closed.

Theorem 1.1. C is algebraically closed.
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Proof. We will use the following facts about R,C:

1. R has characteristic 0.

2. Any polynomial of odd degree over R has a real root (follows from intermediate value
theorem).

3. [C : R] = 2, and every element of C has a square root in C.

Let L be a finite extension of C; we want to show that L = C. We may as well
extend L to a Galois extension (char(C) = 0, so L is automatically separable). So we have
R ⊆ C ⊆ L. Let G = Gal(L/R). We want to show that G has order 2. Fact 2 above gives
us that G has no subgroups of odd index > 1 as R has no extensions of odd degree. Let
H be a subgroup of C, so H has index 2 in G. Fact 3 gives us that H has no subgroups of
index 2 (since C has no extensions of index 2).

Let S be a 2-Sylow subgroup of G. S has odd index, so S = 6 by fact 2. So G = S
has order 2n for some n. So H has order 2n−1. If n− 1 > 0, H has subgroups of index 2,
which would contradict fact 3, so |H| = 1, and |G| = 2. So C is algebraically closed.

1.3 Primitive elements of separable extensions

Lemma 1.1. Suppose V is a vector space over an infinite field K. Then V is not a union
of finitely many proper subspaces.

Proof. By induction. Let V1, . . . , Vn be proper subspaces. Choose v no in V1, . . . , Vn−1 by
induction. Choose w /∈ Vn. Look at v + kq for k ∈ K. There is at most 1 value of k for
which this is in Vi for any given i. Since K is infinite, we can choose k so that v + kq is
not in any Vj .

Theorem 1.2. If L/K is a finite separable extension, L is generated by 1 element; i.e.
there exists some α ∈ L such that L = K(α).

Proof. There are only finitely many extensions between K and L. Let M be a Galois
extension containing L. Then there ares only finitely many extensions of K in M , as
these correspond to subgroups of the Galois group. Each extension is a vector space over
K. Suppose K is infinite. Then the vector space L is not a union of a finite number of
subspaces, so some element α ∈ L is not in any smaller extension of K. So L = K(α). If
K is finite, then L is finite, so L∗ is cyclic.

Example 1.4. Let Fp(t
p, up) ⊆ Fp(t, u). This has degree p2 because

[Fp(t, u) : Fp(t, u
p)] = [Fp(t, u

p) : Fp(t
p, up)] = (p)(p) = p2.

Every element a of Fp(t, u) generates an extension of degree p or 1. In fact, ap ∈ Fp(t
p, up)

for t or u since (x + y)p = xp + yp and (xy)p = xpyp. So this is true for all polynomials
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in t, u. So Fp(t, u) is not generated by 1 element, and there are infinitely many extensions
between Fp(t

p, up) and Fp(t, u).
This is an example of a purely inseparable extension. These tend to be very weird and

break your intuition. [Jacobson: in some cases subfields iff subalgebras of Lie algebra]

1.4 Primitive elements of extensions with Galois group Z/pZ

Suppose L/K is a Galois extension with Galois group Z/pZ (cyclic). What can we say
about L? Suppose K = Q(ζ), where ζ is a primitive p-th root of unity. L = K( p

√
a) for

some a ∈ K. This is a root of xp−a. The other roots are p
√
a, p
√
aζ, p
√
aζ2, . . . . Any element

of the Galois group takes p
√
a to p

√
aζi for some i. So the Galois groups is a subgroup of

Z/pZ, making it 1 or Z/pZ itself.
Suppose K contains all p-th roots of unity and K has characteristic 6= p. We want to

show that L = K( p
√
a) for some a. How do we find this element? Let σ be a generator of

the Galois group Z/pZ, so σp = 1. The key idea is to look at the action of σ on the vector
space L over K (forget that L is a field). σ is a linear transformation, so we can look at
its eigenvalues and eigenvectors. We hope to diagonalize σ.

σp = 1, so its eigenvalues are the roots of xp = 1, which are contained in K. Now
let’s find eigenvectors. Pick any v ∈ L. Look at v + σv + σ2v + · · · + σp−1v, which has
eigenvalue 1. Similarly, v + ζσv + ζ2σ2v + · · · + ζp−1σp−1v has eigenvalue ζ−1. We then
get v + ζ−1σv + ζ−2σ2v + · · · + ζ−(p−1)σp−1v is an eigenvector with eigenvalue ζ = ζ1−p.
Note that v is the average of these, since v = 1 + ζ + ζ2 + · · ·+ ζp−1 = 0. So L is a direct
sum of p 1 dimensional subspaces, on which σ acts as 1, ζ, ζ2, ζ3, . . . .

Pick w to be any eigenvector of σ with eigenvalue 6= 1 (so q /∈ K, where K is an
subspace with eigenvalue = 1). Then σw = ζw, say, which gives σwp = ζpwp = wp. So
wp ∈ K as it is fixed by σ. Put a = wp ∈ K. Then L = K( p

√
a). So we have shown that

Proposition 1.1. If L/K is a Galois extension such that

1. Gal(L/K) = Z/pZ,

2. K contains roots of 1 + x+ · · ·+ xp−1 = 0,

3. K has characteristic 6= p,

then L = K( p
√
a) for some a ∈ K.

What if K has characteristic p? Assume that L/K is Galois, [L : K] = p. Again, let
σ be a generator of the Galois group. L cannot be of the form K( p

√
a) because xp − a

is inseparable (all roots are the same). So the splitting field is not Galois! Look at the
eigenvalues and eigenvectors of σ on the vector space L. σp = 1, so σ − 1)p = 0. So σ − 1
is nilpotent and not diagonalizable! The only eigenvalue is 1, and the eigenspace is K.
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Nilpotent matrices look something like this:

M =


0 ∗ ∗ ∗

0 ∗ ∗
0 ∗

0


The eigenvectors of M are no use, but generalized eigenvectors, (M−λ)n = 0, are useful. So
try to find the easiest generalized eigenvector, (σ−1)2v = 0. This means that (σ−1)v ∈ K,
as it is fixed by σ. So σv − v = a for some a ∈ K and v ∈ L. Changing v to v/a, we get
σv− v = 1. This is the simplest substitute for an eigenvector. Instead of σv = λv, we have
σv = λv + 1. So σv = v + 1, and σvp = vp + 1. Then σ(vp − v) = vp − v, so vp − v ∈ K.
So r is a root of xp − x− b = 0 for some b ∈ K. This is called an Artin-Schrier equation,
the analogue of xp − b. So L = K(v), where v is a root of an A-S polynomial.

Suppose v is a root of xp − x− b = 0 in characteristic p. What are the other roots?

(v + 1)p − (v + 1)− b = vp + 1− v − 1− b = vp − v − b = 0

So the other roots are v, v + 1, v + 2, . . . , v + (p − 1). This is p distinct roots. So K(v) is
Galois because it is separable (distinct roots) and normal (given one root, we can find the
others). The Galois group is a subgroup of Z/pZ.

Over characteristic p, there are 2 possibilities:

1. xp − x− b is irreducible, so it is a Galois extension with Galois group Z/pZ.

2. xp − x− b factors into linear factors (b is of the form cp − c for c ∈ K).

Example 1.5. We can apply this to the construction of finite fields. What was the issue
with order p2? Fp( p

√
a), a is not a square in Fp, but there is no neat way to write down

a in general. We can choose a choice of irreducible polynomial. What about pp? In this
case, we can take a root of xp − x − 1. Check that this has no roots over Fp. x

p − x = 0
for all x ∈ Fp.

Given a polynomial xn + an−1x
n−1 + · · · + an, a classical problem is to find formulas

for its roots. For example, x2 + bx+ c has roots x = −b±
√
b2−4c
2 . There are no formulas for

5th degree polynomials; we will show this next time.

4


	Examples in Galois Theory and Primitive Elements
	Galois group of an irreducible degree 3 polynomial
	Algebraic closure of C
	Primitive elements of separable extensions
	Primitive elements of extensions with Galois group Z/pZ


