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1 Examples in Galois Theory and Primitive Elements

1.1 Galois group of an irreducible degree 3 polynomial

Consider an irreducible polynomial 23 + ax? 4+ bz + ¢ = 0. The Galois group G C Sj,
the permutations of the roots. 3 divides the order of the Galois group, so G = Z/3Z, so
7 = S3.

Example 1.1. Take 22 — 2 over Q. The Galois group is S3.
Example 1.2. Take 23 + 2 + 1 over F,. The Galois group is Z/3Z.

We look at A = (o — B)(8 — 7)(y — «), where a, (B, and v are the roots of the
polynomial. A is fixed by Z/3Z, but changes sign under odd permutations of «, 3,v. If
the Galois group is Z/3Z, A must be in the base field. If the Galois group is S3, A — —A
must be an automorphism. We must find if

A? = (a=B)Y(B -7~ o)

has a square root in the base field. This is a symmetric function of «, 3,~, and we can

compute this as
A% = —4p* — 2762

if a =0.

Example 1.3. Take 22 — 3z — 1 over Q. A% = 81, which is a square in Q. So the Galois
group is Z/3Z.

1.2 Algebraic closure of C

We have enough tools to provide a mostly algebraic proof of the fundamental theorem of
algebra: that C is algebraically closed.

Theorem 1.1. C is algebraically closed.



Proof. We will use the following facts about R, C:
1. R has characteristic 0.

2. Any polynomial of odd degree over R has a real root (follows from intermediate value
theorem).

3. [C:R] =2, and every element of C has a square root in C.

Let L be a finite extension of C; we want to show that L = C. We may as well
extend L to a Galois extension (char(C) = 0, so L is automatically separable). So we have
R CCC L. Let G = Gal(L/R). We want to show that G has order 2. Fact 2 above gives
us that G has no subgroups of odd index > 1 as R has no extensions of odd degree. Let
H be a subgroup of C, so H has index 2 in G. Fact 3 gives us that H has no subgroups of
index 2 (since C has no extensions of index 2).

Let S be a 2-Sylow subgroup of G. S has odd index, so S = 6 by fact 2. So G = S
has order 2" for some n. So H has order 2"~ 1. If n — 1 > 0, H has subgroups of index 2,
which would contradict fact 3, so |[H| =1, and |G| = 2. So C is algebraically closed. [

1.3 Primitive elements of separable extensions

Lemma 1.1. Suppose V' is a vector space over an infinite field K. Then V is not a union
of finitely many proper subspaces.

Proof. By induction. Let Vi,...,V, be proper subspaces. Choose v no in Vp,...,V,_1 by
induction. Choose w ¢ V,,. Look at v + kq for k € K. There is at most 1 value of k for
which this is in V; for any given ¢. Since K is infinite, we can choose k so that v 4 kq is
not in any Vj. O

Theorem 1.2. If L/K is a finite separable extension, L is generated by 1 element; i.e.
there exists some a € L such that L = K(«).

Proof. There are only finitely many extensions between K and L. Let M be a Galois
extension containing L. Then there ares only finitely many extensions of K in M, as
these correspond to subgroups of the Galois group. Each extension is a vector space over
K. Suppose K is infinite. Then the vector space L is not a union of a finite number of
subspaces, so some element o € L is not in any smaller extension of K. So L = K(«a). If
K is finite, then L is finite, so L* is cyclic. O

Example 1.4. Let F,,(tP,uP) C F,(t,u). This has degree p* because
[Ey(t,u) : Fy(t,ul)] = [Fp(t,uf) : E,(t?,uP)] = (p)(p) = p*.

Every element a of F},(t,u) generates an extension of degree p or 1. In fact, a? € F,(t*, u?)
for t or u since (z + y)P = xP + yP and (zy)? = xPyP. So this is true for all polynomials



in t,u. So Fp(t,u) is not generated by 1 element, and there are infinitely many extensions
between F),(tP, uP) and Fj,(t,u).

This is an example of a purely inseparable extension. These tend to be very weird and
break your intuition. [Jacobson: in some cases subfields iff subalgebras of Lie algebral

1.4 Primitive elements of extensions with Galois group Z/pZ

Suppose L/K is a Galois extension with Galois group Z/pZ (cyclic). What can we say
about L? Suppose K = Q(¢), where ( is a primitive p-th root of unity. L = K(¥a) for
some a € K. This is a root of 2P —a. The other roots are ¥/a, ¥/a, ¥/a¢?,.... Any element
of the Galois group takes ¥/a to ¢/a¢’ for some i. So the Galois groups is a subgroup of
Z/pZ, making it 1 or Z/pZ itself.

Suppose K contains all p-th roots of unity and K has characteristic # p. We want to
show that L = K(¥/a) for some a. How do we find this element? Let o be a generator of
the Galois group Z/pZ, so o? = 1. The key idea is to look at the action of o on the vector
space L over K (forget that L is a field). o is a linear transformation, so we can look at
its eigenvalues and eigenvectors. We hope to diagonalize o.

oP =1, so its eigenvalues are the roots of #? = 1, which are contained in K. Now
let’s find eigenvectors. Pick any v € L. Look at v 4+ ov + o%v + - -- + oPlv, which has
eigenvalue 1. Similarly, v 4+ Cov + (20%v + - - + (P~ 1oP~ 1y has eigenvalue (~!. We then
get v+ (lov+ ¢ 2020+ - + PPy is an eigenvector with eigenvalue ¢ = (177,
Note that v is the average of these, since v =14 +¢%+---+(?P~1 =0. So L is a direct
sum of p 1 dimensional subspaces, on which o acts as 1,¢,¢2,¢3,. ...

Pick w to be any eigenvector of o with eigenvalue # 1 (so ¢ ¢ K, where K is an
subspace with eigenvalue = 1). Then cw = (w, say, which gives owP = (PwP = wP. So
wP € K as it is fixed by 0. Put a = wP € K. Then L = K({/a). So we have shown that

Proposition 1.1. If L/K is a Galois extension such that
1. Gal(L/K) =7/pZ,
2. K contains roots of 1 +x + -+ 2P~1 =0,
3. K has characteristic # p,

then L = K(¥/a) for some a € K.

What if K has characteristic p? Assume that L/K is Galois, [L : K] = p. Again, let
o be a generator of the Galois group. L cannot be of the form K(¥/a) because 2P — a
is inseparable (all roots are the same). So the splitting field is not Galois! Look at the
eigenvalues and eigenvectors of o on the vector space L. o =1,s0 0 —1)?» =0. So o — 1
is nilpotent and not diagonalizable! The only eigenvalue is 1, and the eigenspace is K.



Nilpotent matrices look something like this:

0 * =*
0 =

0

S ¥ ¥ ¥

The eigenvectors of M are no use, but generalized eigenvectors, (M —\)"™ = 0, are useful. So
try to find the easiest generalized eigenvector, (0 —1)?v = 0. This means that (0 —1)v € K,
as it is fixed by 0. So ov — v = a for some a € K and v € L. Changing v to v/a, we get
ov—wv = 1. This is the simplest substitute for an eigenvector. Instead of cv = Av, we have
ov=MAv+1 Soov=v+1, and ovP = vP + 1. Then o(vP —v) =P —v, so P —v € K.
So ris a root of 7 — z — b = 0 for some b € K. This is called an Artin-Schrier equation,
the analogue of 2P — b. So L = K(v), where v is a root of an A-S polynomial.
Suppose v is a root of P — x — b = 0 in characteristic p. What are the other roots?

(v+1)P—(v+1l)—b=vP+1-v—-1-b=v"—-v—-0b=0

So the other roots are v,v + 1,v +2,...,v 4+ (p — 1). This is p distinct roots. So K (v) is
Galois because it is separable (distinct roots) and normal (given one root, we can find the
others). The Galois group is a subgroup of Z/pZ.

Over characteristic p, there are 2 possibilities:

1. 2P — z — b is irreducible, so it is a Galois extension with Galois group Z/pZ.
2. 2P — x — b factors into linear factors (b is of the form ¢ — ¢ for ¢ € K).

Example 1.5. We can apply this to the construction of finite fields. What was the issue
with order p?? F,({/a), a is not a square in F,, but there is no neat way to write down
a in general. We can choose a choice of irreducible polynomial. What about p?? In this
case, we can take a root of P — x — 1. Check that this has no roots over F,. 2 —x =0
for all x € F,.

Given a polynomial " + a,_12" "' 4 --- + a,, a classical problem is to find formulas

—btvVb2—4c
2

for its roots. For example, 22 4+ bx + ¢ has roots z = . There are no formulas for

5th degree polynomials; we will show this next time.
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